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Abstract: This paper is concerned with the study of prop-
agation of Rayleigh waves in a homogeneous isotropic
piezo-electricmicrostretch-thermoelastic solid half-space.
The medium is subjected to stress-free, isothermal bound-
ary. After developing a mathematical model, the disper-
sion curve in the form of polynomial equation is obtained.
Phase velocity and attenuation coefficient of the Rayleigh
wave are computed numerically. The numerically simu-
lated results are depicted graphically. Some special cases
have also been derived from the present investigation.

Keywords: Rayleigh wave, microstretch-thermoelastic,
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1 Introduction
Presently, smartmaterials have assumed great importance
in engineering, technology, and sciences. The important
features of smart materials are due to their internal molec-
ular structures known as smart structure, for example sen-
sors, actuators, etc. One of the smart materials currently
under research applications are piezo-electric materials.
The piezo-electric substances are those that generate elec-
tricity (known as piezo-electricity) in response tomechan-
ical stress. Such type ofmaterials are used in actuators and
sensors due to their direct and converse piezo-electric ef-
fects. To ensure that the piezo-electric appliances are func-
tional in extreme temperature conditions, the thermal ef-
fects are to be considered inmathematical model develop-
ment. So, a result of these electrical-thermal-mechanical
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coupling thermoelastic theories of piezo-electric materi-
als have beendeveloped. First, a theory of piezo-electricity
was developed by Mindlin [1]. Mindlin [2] proposed the
basic governing relations for piezo-electric thermoelas-
tic solid. Later Nowacki [3] deduced the physical laws
and theorems for thermo-piezo-electric substances. Later
Chandrasekharaiah [4] extended this theory also includ-
ing the finite speed of thermal disturbances. The ther-
moelastic theory of piezo-electric materials was applied to
composite plates by Tauchert [5].

Eringen [6] proposed the concepts of micropolar
piezoelectricity and magneto-elasticity. Eringen [7] intro-
duced the electromagnetic theory of microstretch ther-
moelasticity. The various applications of this theory are in
porous elastic bodies, animal bones, and synthetic mate-
rials having microscopic components. The special cases
of this theory are the theory of piezoelectricity and the
theory of magneto-elasticity. The materials having linear
coupling betweenmechanical and electric field are known
as piezoelectric materials. These materials are widely
used in intelligent structure systems, ultrasonic transduc-
ers, piezoelectric composite structures, and loudspeakers.
Iesan [8] developed the linear theory ofmicrostretchpiezo-
electricity and established the uniqueness theorem and
reciprocity relation.

Eringen [9] developed the theory and basic equations
of microstretch thermoelastic solids. Microstretch contin-
uum is a model for Bravais lattice having its basis on the
atomic level and two-phase dipolar substance having core
at the macroscopic level. Examples of microstretch ther-
moelastic materials are composite materials filled with
chopped elastic fibers, porous elastic fluids whose pores
have gases or inviscid liquids, or other elastic inclusions
and liquid–solid crystal. Kumar [10] discussed a dynamic
problem in micropolar thermoelastic medium with mass
diffusion. Kumar [11] also studied microstretch thermoe-
lastic medium with the inclusion of Hall current.

Kumar and Gupta [12] presented the problem of
Rayleigh wave propagation in generalized thermoelastic
medium with mass diffusion. Kumar et al. [13] and Abd-
Alla et al. [14, 15] recently discussed some problems re-
lated to Rayleigh waves. Singh [16] also investigated a
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Rayleigh wave problem in thermoelastic medium includ-
ing the impedance boundary condition.

The present research is devoted to the study of behav-
ior of Rayleigh waves in a piezo-electric microstretch ther-
moelastic solid half-space. Phase velocity and attenuation
coefficients of Rayleigh wave propagation have been com-
puted numerically, and graphical representation of their
variations has been shown. Some particular cases of inter-
est have also been discussed.

2 Basic equations
Following Iesan [8] and IesanandQuintanilla [17], thefield
equations and constitutive relations for a homogeneous,
isotropic piezo-electric thermo-microstretch solid arewrit-
ten as follows:

(λ + µ)∇ (∇.u) + (µ + K)∇2u + K∇ × ϕ + λ0∇ϕ* (1)
− β0∇τ = ρü,

(︁
𝛾∇2 − 2K

)︁
ϕ + (α + β)∇ (∇.ϕ) + K∇ × u = ρjϕ̈, (2)

(︁
α0∇2 − λ3

)︁
ϕ* − λ2∇2ψ + ν1∇2τ − λ0∇.u + c0

∂
∂t τ (3)

= ρj02 ϕ̈*

(︂
n1K* + n2

K1
T0

)︂
∇2τ − β0 (∇.u̇) − aτ̈ − c0ϕ̇

* (4)

+ ν1∇2ϕ* − ν3∇2ψ = 0,

λ2∇2ϕ* + χ∇2ψ + ν3∇2τ = 0, (5)

Ei = −ψi , (6)

tij =
(︁
λ0ϕ* + λur,r

)︁
δij + µ

(︀
ui,j + uj,i

)︀
(7)

+ K
(︀
uj,i − ϵijkϕk

)︀
− β0δijT,

mij = αϕr,rδij + βϕi,j + 𝛾ϕj,i + b0ϵmjiϕ
*
,m + λ1ϵijkEk (8)

+ ν2ϵijkτk ,

λ*i = α0ϕ*,i + b0ϵijmϕj,m + λ2Ei + ν1τi , (9)

Dk = λ1ϵijkϕj,i − λ2ϕ
*
,k − ν3τ,k + χEk (10)

λ, µ are Lame’s constants, α, β, 𝛾, λ0, α0, b0 are mi-
crostretch constants, Kis thermal conductivity, λ1, λ2, υ1,
υ2, υ3 are material constants, u is displacement vector, ϕ
is themicrorotationvector,ϕ* is scalarmicrostretch, T rep-
resents temperature and τ̇ = T, T0 is reference temper-
ature, K* is the coefficient of thermal conductivity, c* is
specific heat at constant strain, j is the microinertia, j0 is
microinertia for themicroelements,mij are components of
couple stress, tij are components of stress, λ*i ismicrostress
tensor, Dk is dielectric displacement vector, β0 is the relax-
ation time, ψ is electric potential, n1, n2 are piezoelectric
parameters, and χ represents the dielectric susceptibility.

In the above equations, the symbol (“,”) followed by a
suffix denotes differentiation with respect to spatial coor-
dinates and a superposed dot (“ ”̇) denotes the derivative
with respect to time respectively.

3 Formulation of the problem
A rectangular Cartesian coordinate system OX1X2X3 hav-
ingorigin on x3-axiswith x3-axis pointing vertically down-
ward the medium is considered.

Further, we consider the plane strain problemwith all
the field variables depending on (x1, x3, t). For such two-
dimensional problems, we take

u = (u1, 0, u3) ϕ = (0, ϕ2, 0) , E = (E1, 0, E3) , (11)

Also, it is convenient to define in equations (1)–(6) the
following dimensionless quantities:(︀
x′1, x′3, u′1, u′3

)︀
= 1
L0

(x1, x3, u1, u3) , (12)

ϕ′
i =

ρc21
β1T0

ϕi , ϕ*′ = ρc21
β1T0

ϕ*, τ′ = c1
L0T0

τ, t′ = c1
L0
t,

t′ij =
1
ρc21

tij , c21 =
λ + 2µ + K

ρ , m*ij =
1

ρc21L0
mij

Figure 1: Geometry of the problem.
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Making use of (12) in equations (1)–(6) andwith the help of
(11), we obtain the following component wise equations:

a1∇2u1 + (1 − a1)
∂
∂x1

(︂
∂u1
∂x1

+ ∂u3∂x3

)︂
− a2

∂ϕ2
∂x3

(13)

+ a3
∂ϕ*
∂x1

− a4
∂τ
∂x1

= ∂
2u1
∂t2 ,

a1∇2u3 + (1 − a1)
∂
∂x3

(︂
∂u1
∂x1

+ ∂u3∂x3

)︂
+ a2

∂ϕ2
∂x1

(14)

+ a3
∂ϕ*
∂x3

− a4
∂τ
∂x3

= ∂
2u3
∂t2 ,

a5∇2ϕ2 + a2
(︂
∂u1
∂x3

− ∂u3∂x1

)︂
− 2a2ϕ2 = a6

∂2ϕ2
∂t2 , (15)

(︁
a7∇2 − a8

)︁
ϕ* − a9∇2ψ + a10∇2τ (16)

− a3
(︂
∂u1
∂x1

+ ∂u3∂x3

)︂
+ a11

∂τ
∂t = a12ϕ̈

*,

(︂
n1K1 + n2K2

∂
∂t

)︂
∇2τ − a4

∂
∂t

(︂
∂u1
∂x1

+ ∂u3∂x3

)︂
(17)

− a13
∂2τ
∂t2

− a11
∂ϕ*
∂t + a10∇2ϕ* − a14∇2ψ = 0

a9∇2ϕ* + υ∇2ψ + a14∇2τ = 0, (18)

Here, a1 = λ+µ
ρc21

, a2 = K
ρc21

, a3 = λ0
ρc21

, a4 = β0T0
ρc21

, a5 = 𝛾1
ρc21L20

,

a6 = I1
ρL20

, a7 = a0
ρc21L20

, a8 = λ3
ρc21

, a9 = λ2ψ0
ρc21L20

, a10 = υ1T0
ρc31L20

,

a11 = c0T0
ρc21

, a12 = j0
ρL20

, a13 = aT20
ρc21

, a14 =
υ3ψ0T0
ρc31L0

, K1 = K*T20
ρc41

,

K2 = K1T0
ρc31L0

, ν = χψ2
0

ρc21L20
,∇2 = ∂2

∂x21
+ ∂2
∂x23

.
The relations connecting displacement components

and microtemperature components to the potential func-
tions in dimensionless form are:

u1 =
∂ψ1
∂x1

+ ∂ψ2
∂x3

, u3 =
∂ψ1
∂x3

− ∂ψ2
∂x1

(19)

Using the relations defined by (19) in equations (13)–
(18) and rewriting (after suppressing the primes), we ob-
tain: [︂

∇2 − ∂2

∂t2

]︂
ψ1 + a3ϕ

* − a4
∂τ
∂t = 0, (20)

(︂
a1∇2 − ∂2

∂t2

)︂
ψ2 − a2ϕ2 = 0, (21)

a2∇2ψ2 +
(︂
a5∇2 − 2a2 − a6

∂2

∂t2

)︂
ϕ2 = 0, (22)

(︂
a10∇2 − a11

∂
∂t

)︂
ϕ* − a14∇2ψ − a4

∂
∂t∇

2ψ1 (23)

+
[︂(︂
n1K1 + n2K2

∂
∂t

)︂
∇2 − a13

∂2

∂t2

]︂
τ = 0,

(︂
a7∇2 − a8 − a12

∂2

∂t2

)︂
ϕ* +

(︂
a10∇2 + a11

∂
∂t

)︂
τ (24)

− a9∇2ψ − a3∇2ψ1 = 0,

a9∇2ϕ* + ν∇2ψ + a14∇2τ = 0. (25)

4 Solution of the problem
The solution of the considered physical variables can be
decomposed in terms of the normal modes as in the fol-
lowing form:{︁

ψ, ψ1, ϕ
*, τ, ψ2, ϕ2

}︁
(x1, x3, t) (26)

=
{︁
ψ, ψ1, ϕ

*, τ, ψ2, ϕ2

}︁
(x3) ei(kx1−ωt),

Here ω is the angular frequency and k is wave number.
Utilizing the expression (26) in equations (20)–(25)

yield the following equations:(︁
D2−k2 + ω2

)︁
ψ1 + iωa4τ + a3ϕ

* = 0, (27)

[︁
(n1K1 − iωn2K2)

(︁
D2−k2

)︁
+ a13ω2

]︁
τ (28)

+ iωa4
(︁
D2−k2

)︁
ψ1 +

(︁
a10

(︁
D2−k2

)︁
+ iωa11

)︁
ϕ*

− a14
(︁
D2−k2

)︁
ψ = 0,

[︁
a7

(︁
D2−k2

)︁
− a8 + a12ω2

]︁
ϕ* (29)

+
[︁
a10

(︁
D2−k2

)︁
− iωa11

]︁
τ −

(︁
D2−k2

)︁(︁
a3ψ1 + a9ψ

)︁
= 0,

a9
(︁
D2−k2

)︁
ϕ* + ν

(︁
D2−k2

)︁
ψ + a14

(︁
D2−k2

)︁
τ (30)

= 0,

(︁
a1

(︁
D2−k2

)︁
+ ω2

)︁
ψ2 − a2ϕ2 = 0, (31)

a2
(︁
D2−k2

)︁
ψ2 +

(︁
a5

(︁
D2−k2

)︁
− 2a2 + a6ω2

)︁
ϕ2 (32)

= 0.
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These two system of equations (27)–(30) and (31) and
(32) have a nontrivial solution if the value of the determi-
nant of coefficients of field quantities is zero, resulting in
the following characteristic equations:[︁

D8 + AD6 + BD4 + CD2 + E
]︁
= 0, (33)

[︁
D4 + FD2 + G

]︁
= 0. (34)

Here, D = d
dx3 and A, B, C, E, F, G, are mentioned in

Appendix 1.
Here, we are only interested in surface waves, so it is

necessary that the movement must be confined to the free
surface x3 = 0 of the half-space. Therefore to satisfy the
radiation condition

(︁
ψ, ψ1, ϕ

*, τ, ψ2, ϕ2

)︁
→ 0 as x3 →

∞ are given as following:(︁
ψ, ψ1, ϕ

*, τ
)︁
=

4∑︁
i=1

(1, α1i , α2i , α3i) Cie−mix3 , (35)

(︁
ψ2, ϕ2

)︁
=

6∑︁
i=5

(1, α4i) Cie−mix3 , (36)

Ci (i = 1, 2, . . . , 6) are arbitrary constants.
m2
i (i = 1, . . . , 4) are the roots of the equation (33) and

m2
i (i = 5, 6) are of equation (34).
Here, α1i = D1i

D0i
, α2i = D2i

D0i
, α3i = D3i

D0i
i = 1, 2, 3, 4, α4i =

a1(m2
i −k

2)+ω2

a2 , i = 5, 6
Dji, D0i j = 1, 2, . . . , 4, are defined in Appendix 2.

5 Boundary conditions
We consider a stress-free insulated surface at x3 = 0 along
with vanishing of temperature gradient and dielectric dis-
placement. Mathematically this can be written as

t33 = t31 = 0, m32 = 0, (37)

λ*3 = 0, ∂T
∂x3

, D3 = 0,

6 Derivation of the secular
equations

Using equations (6)–(10), (19), and (26) in boundary condi-
tions (37), we obtain following system of six simultaneous
homogeneous linear equations:

6∑︁
i,j=1

QijCj = 0 (38)

This system of linear equations (34) has a nonvanish-
ing/nontrivial solution if the determinant of the matrix
of coefficients of amplitudes i.e. coefficients of Cj, j =
1, 2, . . . , 6 vanishes. Mathematically, this concept can be
presented by the following expression:⃒⃒

Qij
⃒⃒
= 0, i, j = 1, 2, . . . , 6 (39)

where

Q1j =

⎧⎪⎪⎨⎪⎪⎩
[︀
b1

(︀
m2
i − k2

)︀
+ b2m2

i
]︀
α1i

+b3α2i + iωb4α3i ,
j = 1, 2, 3, 4

ιkb2mi , j = 5, 6,

Q2j =
{︃
ιkb2α1imi , j = 1, 2, 3, 4(︀
b5m2

l − b6k
2)︀ − b5α4i , j = 5, 6,

Q3j =
{︃
−ιk (b9α2i + b10 − iωb1α3i) , j = 1, 2, 3, 4
−b8α4imi , j = 5, 6,

Q4j =
{︃
−mib12α2i + mib4 + iωmib15α3i , j = 1, 2, 3, 4
−ikb13α4i , j = 5, 6,

Q5j =
{︃
−iωα3i , j = 1, 2, 3, 4
0, j = 5, 6,

Q6j =
{︃
b17miα2i + mib18, j = 1, 2, 3, 4
ikb16α4i , j = 5, 6,

b1 =
λ
ρc21

, b2 =
2µ + K
ρc21

, b3 =
λ0L20
j20ρc21

, b4 =
β0T0
ρc21

,

b5 =
µ + K
ρc21

, b6 =
µ
ρc21

, b7 =
KL20
j2ρc21

, b8 =
𝛾

j2ρc21
,

b9 =
b0
j20ρc21

, b10 =
λ1ψ0
L20ρc21

, b11 =
ν2T0
L0ρc31

,

b12 =
α0
j20ρc21

, b13 =
b0
j2ρc21

, b14 =
λ2ψ0
L20ρc21

,

b15 =
ν1T0
L0ρc31

, b16 =
λ1L0
j2 , b17 =

λ2L0
j02

, b18 =
χψ0
L0

.

7 Particular case
Microstretch thermoelastic medium: If the piezo-electric
parameters are neglected, then this problem reduces to
that of microstretch thermoelastic medium.
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8 Numerical Results and
Discussions

In order to illustrate the theoretical results obtained in the
previous sections, some numerical results are presented.
For numerical computation, the values for relevant param-
eters are taken for aluminum epoxy-like material, the val-
ues of physical parameters are given below: λ = 7.59×109

Nm−2, µ = 1.89 × 109 Nm−2, K = 1.49 × 107 Nm−2,
ρ = 2190 kgm−3, j = 0.2 × 10−19 m2, 𝛾 = 2.63 × 103

N, λ1 = 0.5 × 1010 Nm−2, T0 = 298 K, I = 19.6 × 10−8

m2, K* = 1.7 × 106 Jm−1s−1K−1, a = 9.6 × 102 m2s−2K−1,
b = 32×102 kg−1m5s−2, j0 = 0.19×10−6m2, α0 = 0.9×103

N, b0 = 9.1×102N, λ0 = 0.5×109Nm−2, λ1 = .5×109 Cm−1,
λ2 = 1.7 × 104 Cm−1, λ3 = 0.7 × 109 Nm−2, ν1 = 0.3 × 106

Ns−1, ν2 = 0.457 × 109 NK−1s−1, ν3 = 2.4 × 103, Cm−1s−1,
χ = 318, L0 = 1m, ψ0 = 1NmC−1.

The analysis of dimensionless field quantities has
been made and the graphs have been plotted with respect
to wave number. The variation of

⃒⃒
Qij

⃒⃒
, Rayleigh wave ve-

locity and amplitude ratios is shown in figures below. The
variation of

⃒⃒
Qij

⃒⃒
, Rayleigh wave velocity and amplitude

ratios have been shown for different values of angular fre-
quency as well as for different values of piezo-electric pa-
rameter n1. The different values of angular frequency ω
chosen for analysis are ω = 0.1, ω = 0.11 and ω = 0.12.
Also, the different values of piezo-electric parameter n1
are n1 = 0.001, n1 = 0.01 and n1 = 0.03.

The different plots of variation of
⃒⃒
Qij

⃒⃒
, Rayleigh wave

velocity and amplitude ratios for these different values are
compared in graphs to study the influence of angular fre-
quency and piezo-electric parameter in the present inves-
tigation of Rayleigh waves.

The variation of secular equations
⃒⃒
Qij

⃒⃒
with respect to

wavenumber k under the influence of angular frequencyω
is shown in Figure 2. The significant variation is shown in
range 0.2 ≤ k ≤ 1. Also it is noted from the figure that the
highest variation is shown in the curve corresponding to
the value ω = 0.1. The variation of

⃒⃒
Qij

⃒⃒
w.r.t. wave num-

ber exhibits a similar trend for different values of ω.
Figure 3 shows the variation of Rayleigh wave veloc-

ity with respect to wave number k for different values of
angular frequency ω. For ω = 0.1, the Rayleigh wave
velocity initially decreases uniformly and then decreases
sharply near k = 0.7. After reaching a minimum value,
the Rayleigh wave velocity increases and approaches the
boundary surface for k ≥ 1. For other values of ω, the vari-
ation of Rayleighwave velocity shows an oscillatory trend.

Figure 2: Variation of
⃒⃒
Qij

⃒⃒
w.r.t. wave number under the influence

of angular frequency.

Figure 3: Variation of Rayleigh wave velocity w.r.t. wave number
under influence of ω.

Figure 4 presents the variation of attenuation coeffi-
cient with respect to wave number k for different assign-
ments of angular frequency ω. It is observed from the
graph that maximum variation in attenuation coefficient
corresponds to ω = 0.11 and minimum variation is seen
for ω = 0.1.

Figure 5 exhibits the trend of variation of
⃒⃒
Qij

⃒⃒
with re-

spect towave number under the influence of piezo-electric
parameter n1. It is observed from the graph that the vari-
ation in

⃒⃒
Qij

⃒⃒
in the case of n1 = 0.03 is maximum and is

minimum for n1 = 0.001. So, it can be stated that the vari-
ation in

⃒⃒
Qij

⃒⃒
is large in those materials having high value

of piezo-electric parameters.
Figure 6 shows the variation of Rayleigh wave velocity

with respect towave number kfor different values of piezo-
electric factor n1. The variation ismaximum in case of n1 =
0.03 and is minimum in case of n1 = 0.001.
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Figure 4: Variation of attenuation coeflcient w.r.t. wave number
under influence of frequency ω.

Figure 5: Variation of
⃒⃒
Qij

⃒⃒
w.r.t. wave number under the influence

of n1.

Figure 6: Variation of Rayleigh wave velocity w.r.t. wave number
under influence of n1.

In Figure 7, the variation of attenuation coefficient
with respect to the wave number is shown for three dif-

Figure 7: Variation of attenuation coeflcient w.r.t. wave number
under influence of n1.

ferent values of piezo-electric parameter n1. The trend of
variation of attenuation coefficient is shown for the range
0 ≤ k ≤ 1. There is significant variation only in the sub-
range 0.2 ≤ k ≤ 0.8. The variation of attenuation coeffi-
cient shows oscillatory behavior in this region.

9 Conclusions
The study of the Rayleigh waves in a piezo-electric mi-
crostretch thermoelastic medium was done in this paper.
The boundary surface of the medium is stress free and
thermally insulated. The secular equation for the mathe-
matical model of Rayleigh waves was written.

The graphs showing the variation of Rayleigh wave
velocity and attenuation coefficient with respect to wave
number have been plotted. The influence of angular fre-
quency and piezo-electric parameter is also shown in
graphs. All the physical quantities show variation only in
a specified range of wave number, which is in accordance
with various theories of thermoelasticity.

The present research has practical usefulness in rock
mechanics and seismological research. Such type of stud-
ies may have applications in study of properties of valu-
able deposits under the earth’s surface and even useful for
detection of these useful smart materials.

Funding: No fund received for this research from any
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Appendix A:

A =
(︀
k5 + k4

(︀
ω2 − 2k2

)︀
+ a3k7 + k9

)︀
k4

,

B = X
k4
,

where X =
(︁
k4

(︀
k2 − ω2)︀ + k5

(︀
ω2 − 2k2

)︀
+ k6 +

a3
(︀
k8 − 2k7k2

)︀
+ k10 − 2k2k9

)︁
C = Y

k4
,

where Y =
(︁
k6

(︀
ω2 − 2k2

)︀
+k5

(︀
k2 − ω2)︀+a3k7k4−2a3k8k2

+ k9k4 − 2k10k2
)︁

E =
(︀
k6k2

(︀
k2 − ω2)︀ + a3k8k4 + k10k4)︀

k4
,

F =
(︀
a1l5 + a5

(︀
ω2 − a1k2

)︀
+ a22

)︀
a1a5

,

G =
l5
(︀
ω2 − a1k2

)︀
− a22k2

a1a5
Here,

l6 = n1k1 − iωn2k2,

K* = a λ + 2µ4 ,

l1 = iωa11 − a10k2,

l2 = a13ω2 − l6k2,

l3 = a12ω2 − a8 − a7k2,

l4 = −a10k2 − iωa11,

l5 = a6ω2 − 2a2 − a5k2

k4 = a214 (a7 − a9) − a9a10a14 + a29l6 − νa210 + νm3a7,

k5 = a214
(︁
l3 − a7k2 + a9k2

)︁
− l4a9a14

+ a9
(︁
l2a9 − l6a9k2 − l1a14 + a10k2

)︁
+ ν (l2a7 + l3l6 − l1a10 − l4a10) ,

k6 = a14a9k2 (l1 + l4) − a29l2k2 − a214l3k2

− ν (l2 l3 − l1 l4) ,

k7 = iνωa10a4 + νl6a3 + a14 (a14a3 + iωa4a9) ,

k8 = iνωa4l4 + νa3l2 − a14k2 (a3a14 + iωa4a9) ,

k9 = −iωa4 (iωνa4a7 + νa3a10 + a9 (a14a3 + iωa4a9)) ,

k10 = iωa4
(︁
a9k2 (a3a14 + iωa4a9) − iνωa4l3 − νa3l1

)︁
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Appendix B:

D0i =
(︁
m2
i − k2

)︁2 ⃒⃒⃒⃒⃒⃒⃒iωa4 a10m2
i + l1 l6m2

i + l2
−a3 a7m2

i + l3 a10m2
i + l4

0 a9 a14

⃒⃒⃒⃒
⃒⃒⃒ ,

D1i =
(︁
m2
i − ξ

2
)︁ ⃒⃒⃒⃒
⃒⃒⃒−a14 a10m2

i + l1 l6m2
i + l2

−a9 a7m2
i + l3 a10m2

i + l4
ν a9

(︀
m2
i − k2

)︀
a14

(︀
m2
i − k2

)︀
⃒⃒⃒⃒
⃒⃒⃒ ,

D3i =
(︁
m2
i − ξ

2
)︁2 ⃒⃒⃒⃒⃒⃒⃒−a14 iωa4 l6m2

i + l2
−a9 −a3 a10m2

i + l4
ν 0 a14

⃒⃒⃒⃒
⃒⃒⃒ ,

D4i =
(︁
m2
i − ξ

2
)︁2 ⃒⃒⃒⃒⃒⃒⃒−a14 iωa4 a10m2

i + l1
−a9 −a3 a7m2

i + l3
ν 0 a9

(︀
m2
i − k2

)︀
⃒⃒⃒⃒
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